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Quasi-two-dimensional dipolar fluid at low densities: Monte Carlo simulations and theory
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We studied a quasi-two-dimensional dipolar fluid in the chaining regime using Monte Carlo canonical
simulations and theoretical analyses. The self-assembled clusters were characterized by measuring their inter-
nal energy, conformational properties, and equilibrium length distributions. We generalized and used equilib-
rium polymer theory to describe the structure of the chains and rings observed in the simulations. The scaling
forms of the length distribution functions predicted by theory were found to describe adequately the simulation
results. Finally, we discuss how this type of analysis may be used to establish the existence and mechanisms of
phase transitions in dilute dipolar fluids.
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I. INTRODUCTION

Interest in the dipolar hard sphere fluid has grown in
last decade owing to its unusual chained structure, to
absence of a standard liquid-vapor transition, and to the
lation between the structural and thermodynamic proper
of this system.

The self-assembly of chains, observed in Monte Ca
simulations of the dipolar fluid at low temperatures and d
sities~e.g.,@1–5#!, is driven by short-ranged anisotropic co
relations that constitute a challenge to the standard theo
used in calculations of the thermodynamics of simple flui
In fact, the thermodynamic properties of the dipolar flu
under these conditions cannot be calculated using sim
mean field approximations. On the other hand, integral eq
tion theories capture some features of the pair correla
function but are not reliable as far as calculations of
thermodynamic properties are concerned. By contrast, a
ciation theories have been applied successfully to this p
lem since, by construction, they include the contribution
the chained structure to the thermodynamics. These theo
consider the dipolar fluid as a mixture of polydisperse cha
and write the free energy as a functional of the set of ch
densities. The equilibrium chain length distribution functi
is obtained by minimizing the free energy functional, at fix
temperature and~monomer! density, with respect to the chai
densities@6–9#. This approach has proved very useful
describing several aspects of the simulation results, nam
the slow variation of the internal energy with density@7#, the
absence of a liquid-vapor phase transition@3,6,8,10,11#, and
the dependence of the critical density on the ratio of isotro
to dipolar interactions in models that include attractive is
tropic interactions@3,8,12#.

Recently, a direct calculation of the free energy using
nonical Monte Carlo~MC! simulations, at several tempera
tures, suggested the existence of one~or two! isotropic fluid-
fluid transitions at low densities@13#. The existence of a
least one phase transition was corroborated by isobaric
grand canonical MC simulations at a single temperature@13#.
These results led Tlusty and Safran@14# to propose a new
mechanism for the phase transition of dipolar fluids at l
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densities and temperatures: the competition between a~low
density! phase rich in chains and entropically favorable, a
a ~higher density! phase rich in defects~the junction of three
chain ends and thus called Y defects@15#! and energetically
favorable. From the structural point of view, this transitio
differs from the standard liquid-vapor transition and r
sembles the structural or topological phase transition p
posed by the same authors to describe the emulsification
ure observed in microemulsions@16#. A comparison of the
structure observed in simulations of dipolar fluids with th
responsible for the mechanism proposed in@14# has not been
carried out and thus the existence and mechanisms of
phase transition in dilute dipolar fluids remain open pro
lems. In fact, in simulations where the chain structure w
analyzed@1# defects~branching of chains! were rarely ob-
served@17#.

The simulations and theoretical work referred to abo
were carried out for the dipolar fluid in three dimensio
~3D!. In this paper we report simulation and theoretical
sults for a quasi-two-dimensional~2D! hard sphere dipolar
fluid: a 3D dipolar fluid with the centers of mass and dipo
moments constrained to a plane@18#. We chose to conside
this model since in 2D defect formation is clearly observe
In addition, ring formation~not present or only marginally
present in 3D! also occurs in 2D and thus we develop a
test a generalization of the theoretical analyses used pr
ously @4,6,8,14#. Finally, the reduced dimensionality allow
longer simulations of larger systems which are required
obtain accurate equilibrium distributions for the vario
types of self-assembled clusters~chains, rings, and defec
clusters!. In a different context, this model is useful in con
nection with recent experiments@19# that reported the obser
vation of rings, chains, and defects in monolayers of sph
cal monodispersed colloidal magnetic particles.

In this paper, we aim to describe accurately the struct
of the quasi-2D dipolar fluid at low densities, namely, t
ring and chain length equilibrium distributions observed
computer simulations. This will be done by using equili
rium polymer theory~e.g., @20,21#! and can be viewed as
generalization of the association theories used in earlier w
@4,6,8#. We will discuss the extent to which these results m
©2002 The American Physical Society01-1
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J. M. TAVARES, J. J. WEIS, AND M. M. TELO da GAMA PHYSICAL REVIEW E65 061201
be used to clarify the existence of phase transitions in di
dipolar fluids and to establish the mechanisms driving the

The paper is organized as follows. In Sec. II, we descr
the model, the details of the canonical Monte Carlo simu
tions and the algorithms employed to identify the cluste
The characterization of the clusters is carried out in Sec.
where we report results for their internal energy, conform
tional properties, and the equilibrium length distributions
chains and rings. In Sec. IV, we describe briefly equilibriu
polymer theory and use it to describe the structure of dipo
chains and rings observed in the simulations. We comp
the scaling predicted theoretically with that observed in
simulated length distribution functions of chains and rin
Finally, in Sec. V, we conclude by discussing how our ana
sis may be used to establish the existence of a phase tr
tion in this system.

II. MODEL AND MONTE CARLO SIMULATIONS

The dipolar hard sphere model is a system of hard sph
of diameters with an embedded point dipole of strengthm
interacting through the pair potential

fDHS5H `, r 12,s,

2
m2

r 12
3 @3~m̂1• r̂ 12!~m̂2• r̂ 12!2m̂1•m̂2#, r 12>s.

~1!

r 12 is the distance between the centers of the spheres 1 a
r̂ 12[(rW22rW1)/r 12 the unit interparticle vector, andm̂1 ,m̂2 the
unit vectors in the direction of the dipole moments of sphe
1 and 2, respectively. In the simulations reported in this
per, the centers of the spheres and their dipole moments
constrained to lie on the same plane, and thus the mode
quasi-2D dipolar hard sphere fluid. We define the redu
density asr* [s2N/A, whereN is the number of spheres i
the system with areaA, and the reduced dipole moment~or
square root of the inverse reduced temperature! as m*
[m/As3kBT, wherekB is Boltzmann’s constant andT the
absolute temperature.

The MC simulations were performed in the canonic
(N-V-T) ensemble using 1600 and in most cases 5776
ticles, in a square box with periodic boundary conditions.
Ewald sum was used to account for the long range of
dipole-dipole interaction; for a 3D dipolar interaction wi
the centers of the spheres constrained to a 2D lattice, the
is absolutely convergent and is given by@22,23#

U52
1

2 (
i 51

N

(
j 51

N

(
n

8 @B~ ur i j 1nu!mi•mj1C~ ur i j 1nu!

3~mi•r i j !~mj•r i j !#1
p

A (
GÞ0

erfc~G/2a!

G
F~G!F* ~G!

2
2a3

3Ap
(
i 51

N

~m i !
2, ~2!

where the functionsB(r ) andC(r ) are
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B~r !52
erfc~ar !

r 3
2

2a

Ap

exp~2a2r 2!

r 2
, ~3!

C~r !53
erfc~ar !

r 5
1

2a

Ap
S 3

r 2
12a2D exp~2a2r 2!

r 2
, ~4!

while

F~G!5(
i 51

N

~G•mi !exp@ iG•r i #. ~5!

In Eq. ~2! rW i j 5rW j2rW i , L5AA is the box length, and erfc
denotes the complementary error function. The prime in
sum overn5(nx ,ny), with nx ,ny integers, restricts it toi
Þ j for n50. With a56.5/L, adopted in our calculations
only terms withn50 need to be retained in Eq.~2!. The sum
in reciprocal space extends over all lattice vectorsG
52pn/L with unu2<nmax

2 564 while the sum in real space i
truncated at about 13s.

As will be apparent below, in the range of dipole momen
2.5&m* &3 the dipolar spheres self-assemble into stron
bonded structures~clusters! consisting of linear chains, rings
and more complicated structures where different cha
and/or rings are connected~we shall call these defect cluste
irrespective of their precise topology!. Sampling of phase
space was achieved by performing both single-particle
cluster moves. The latter considerably enhance converge
by bringing clusters more rapidly into contact, thereby c
ating defects~contact of more than two particles!, which
were found to be the major mechanism for breaking a
rearranging clusters.

Single-particle trial moves were performed in cycles, ea
cycle corresponding to the displacement of allN particles
and the rotation of their dipole moments with amplitud
adjusted to give an acceptance ratio of about 0.3. Every 6
cycles for the 5776 particle system or 20 000 cycles for
smaller system, a cluster move was carried out by displac
the centers of mass of all clusters uniformly in a square w
side (10–12)s. In order to satisfy detailed balance clust
moves resulting in a cluster larger than the displaced
were rejected. We use an operational definition of the cl
ters: a particle belongs to a given cluster if its neare
neighbor distance within that cluster is less than a cu
distancer c . Note that at this stage there is no need to d
tinguish between different cluster topologies. Calculatio
were started from an initial configuration with monome
only. Equilibration was assumed to obtain when the variat
of the total energy of the system was less than 2 –3%. Ow
to the very slow rate of convergence this led us to disc
typically of the order of (425)3106 cycles for the 5776
system. After equilibration, of the order of 50–100 config
rations separated by 150 000–200 000 cycles for the 57
particle system and of the order of 100–200 configuratio
separated by 300 000–1 000 000 cycles for the 1600-par
system were kept for later analysis of the structural prop
ties of the clusters. For most thermodynamic states avera
were taken
1-2
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QUASI-TWO-DIMENSIONAL DIPOLAR FLUID AT LOW . . . PHYSICAL REVIEW E65 061201
over three independent runs, consisting of heating a confi
ration to a state with monomers only and then cooling
down to the desired temperature.

In order to check the time evolution of the clusters with
a simulation run we recorded the lifetime of pairs of bond
particles. At m* 52.5, 50% of the bonds are broken~and
reassemble! in 13106 cycles while almost 90% of them d
not survive 53106 cycles. At dipole moment 2.75, howeve
the lifetime of bonds increases by almost an order of mag
tude. As a result, for the simulation with 5776 particles on
65% of the bonds were broken and reassembled during
rather long simulation run. These numbers are almost in
pendent of density. The bond lifetimes increase dramatic
if cluster moves are not used.

In Fig. 1 we plot snapshots of characteristic equilibriu
configurations for different densities and dipole momen
They clearly show that, for these thermodynamic states,
dipolar spheres self-assemble to form aggregates of diffe
sizes. A more careful look distinguishes various types of
gregates. Some exhibit linear aggregation only~every par-
ticle is bonded at most to two other particles! and are closed
~rings! or open~chains!. All the other aggregates are mo
complex and exhibit branching, even if most of their p
ticles are still linearly aggregated. These branching points

FIG. 1. Snapshots of equilibrium configurations obtained fr
canonical Monte Carlo simulations of the quasi-2D dipolar flu
For ~a!, ~b!, and ~c! the reduced density isr* 50.031 25 and the
reduced dipole moments arem* 52.5, 3, and 2.75, respectively. Fo
~d! and ~e! the dipole moment ism* 52.75 and the densities ar
r* 50.025 and 0.0375, respectively.
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called defects and the structures they belong to defect c
ters. The defects exhibit a different number of branch
~mostly 3 or 4, called Y and X defects, respectively, follow
ing @14#! and the corresponding clusters exhibit different
pologies, depending on the number of ‘‘holes,’’ ‘‘ends,’’ an
the type of defects. The snapshots of Fig. 1 may be use
infer the evolution of the dipolar fluid structure with increa
ing dipole moment at fixed density@sequence~a!,~c!,~b!#: the
size of all clusters increases, chains almost disappear,
number of rings decreases, and at the lowest temperatur
structure consists of very few large defect clusters w
rather complex topology. The evolution of the structure w
increasing density at a fixed dipole moment exhibits
same qualitative features, as seen in the sequence of s
shots~d!,~c!, and~e! of Fig. 1. Chaining or linear aggregatio
is to be expected due to the anisotropy of the dipolar in
action ~see@9#!. Defect formation was observed in 2D ex
periments@19#, and was proposed on general grounds for
and 3D dipolar systems@14#. Simulations of 3D dipolar flu-
ids, however, suggest little if any defect formation within t
chaining regime.

A qualitative analysis of the ‘‘dynamics’’ of the equilib
rium dipolar fluid was carried out by inspection of sequenc
of equilibrium snapshots. This revealed the existence of
quent events that drive the equilibrium ‘‘dynamics:’’ cha
ends join to form a ring; a chain bends and attaches one o
ends to an interior particle, thereby forming a ring and
chain that subsequently detaches; two rings fuse into a la
ring; two chains come into contact and exchange branche
ring is absorbed into a chain; two rings form from a larg
ring; etc. This analysis also showed that small rings a
chains are very stable and do not break spontaneously.

The qualitative picture of the structure in terms of cluste
may be quantified by generalizing a method used in@1,4#.
The classification of clusters is carried out by calculating
first, second, and third nearest-neighbor distances~respec-
tively, r 1 j ,r 2 j , and r 3 j ! of each particlej: if r 1 j.r c , j is a
free particle; ifr 1 j,r c and r 2 j.r c , j is an end particle; if
r 2 j,r c andr 3 j.r c , thenj is an interior particle; and, finally
if r 3 j,r c , j is a defect particle. A ring is a cluster wit
interior particles only, a chain a cluster with two~and only
two! ends, and a defect cluster a cluster with at least
defect particle. For strongly bonded clusters~as occurs in the
present system! a range of cutoff distances yields qualit
tively similar results. Throughout this work we usedr c
51.15s. We will show later that our results are independe
of this particular choice.

III. RESULTS FROM MC SIMULATIONS: LENGTH
DISTRIBUTIONS, INTERNAL ENERGY, AND

CONFORMATIONAL PROPERTIES

A. General results

In Table I we summarize our results for the total ener
and for some of the quantities characterizing the clust
These results were obtained from simulations withN
51600 and N55776 particles at reduced densitiesr*
50.025, 0.031 25, and 0.0375 and reduced dipole mom
m* 52.5, 2.75, and 3.0.

.

1-3
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TABLE I. Structure and energy of the quasi-2D dipolar fluid obtained from simulations.N is the total number of particles;U* is the total

reduced energy per particle,U* 5bU/N. N̄x is the mean length of the distribution for clusters of typex, fx is the fraction of particles in
clusters of typex, andEx* is the reduced internal energy per particle in those clusters.c, r, andcd refer to chains, rings, and defect cluster
respectively.Ucl* is the average reduced internal energy per particle in clusters.

m* r* N cycles/106 U* /m* 2 Ucl* /m* 2
N̄c

fc Ec* /m* 2
N̄r

f r Er* /m* 2
N̄cd

fcd Ecd* /m* 2

2.5 0.025 1600 78 21.992 21.981 21 0.44 21.941 22 0.39 22.023 41 0.17 21.990
2.5 0.025 5776 18 21.986 21.976 21 0.47 21.938 22 0.33 22.023 46 0.19 21.987
2.5 0.03125 1600 50 21.992 21.986 23 0.46 21.949 24 0.34 22.029 47 0.20 21.997
2.5 0.03125 5776 11 21.988 21.972 22 0.50 21.938 21 0.27 22.022 50 0.22 21.988
2.5 0.0375 1600 84 22.000 21.985 24 0.47 21.952 24 0.30 22.028 53 0.23 21.997
2.5 0.0375 5776 14 21.993 21.977 24 0.50 21.946 22 0.26 22.025 54 0.24 21.991

2.75 0.025 1600 100 22.097 22.095 39 0.19 22.070 32 0.63 22.100 78 0.18 22.101
2.75 0.025 5776 20 22.092 22.081 38 0.29 22.051 27 0.45 22.095 91 0.26 22.089
2.75 0.03125 5776 13 22.091 22.082 42 0.29 22.058 28 0.42 22.096 91 0.29 22.087
2.75 0.0375 1600 220 22.097 22.093 46 0.24 22.072 34 0.50 22.102 104 0.26 22.097
2.75 0.0375 5776 13 22.089 22.082 44 0.29 22.058 28 0.34 22.097 109 0.37 22.088

3.0 0.025 5776 28 22.151 22.149 55 0.09 22.125 34 0.53 22.151 117 0.38 22.153
3.0 0.03125 5776 8 22.150 22.147 68 0.12 22.125 33 0.33 22.150 174 0.55 22.149
3.0 0.0375 5776 36 22.152 22.151 67 0.09 22.130 38 0.38 22.153 180 0.53 22.153
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The reduced total internal energy per particle, divided
m* 2, decreases slightly with increasing dipole moment an
essentially independent of density, indicating that interclus
interactions are negligible. This is corroborated by a dir
calculation of the average internal energy per particle in c
ters (Ucl* in Table I!, which was found to be nearly the sam
as the total internal energy per particle. We have also ca
lated the internal energy per particle for each type of clus
A comparison of these quantities shows that the internal
ergy of chains is the highest and that of rings the lowe
Defect clusters have an intermediate internal energy per
ticle that approaches that of chains and rings, for large c
ters. Note that for a given thermodynamic state, the energ
the longer runs is always slightly lower. These differences
the order of 1%, are systematic and result from the fact
the internal energy has not fully converged after the v
large number of cycles of our simulation runs.

The mean chain length (N̄c) increases while the fraction
of particles in chains (fc) decreases with increasing dipo
moment. Variations of these quantities with density are h
to detect butN̄c appears to increase with increasing dens
The mean ring length (N̄r) also increases with increasin
dipole moment but more slowly thanN̄c . The fraction of
particles in ringsf r decreases with increasing density and
dependence on the dipole moment appears to be nonm
tonic. The properties calculated from the distribution of d
fect clusters exhibit stronger variations with density and
pole moment: both the mean size (N̄cd) and the fraction of
particles (fcd) in such clusters increase with increasing de
sity and dipole moment.

A comparison of these properties, at a given thermo
namic state, for simulations with different numbers of p
ticles reveals systematic differences that are more p
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nounced atm* 52.75: the longer simulations of smalle
systems, when compared to the shorter simulations of la
ones, exhibit larger rings corresponding to a much lar
fraction of particles and a smaller fraction of particles
chains and defect clusters that exhibit relatively slow s
variations. This is due to the fact that the small difference
the internal energy of the long and short runs, referred
above, has a dramatic effect on some of the structural p
erties. The lower internal energy of the longer runs is resp
sible for the self-assembly of larger rings and fewer cha
and defect clusters. Note that the density dependence o
structural properties is unaffected by this systematic erro
m* 52.5 and 2.75, but this may be the cause of the n
monotonic behavior ofN̄c and N̄r with density, atm* 53.0.

B. Length distributions

In Figs. 2, 3, and 4 we plot the equilibrium length distr
butions of chains, rings, and defect clusters obtained fr
simulations with N55776 at r* 50.025,m* 52.5 ~a! and
r* 50.0375,m* 53.0 ~b!. Also plotted are simple histogram
of these quantities. The distributions obtained for the ot
thermodynamic states are similar. From the figures we id
tify the difficulty in obtaining good statistics at large dens
ties and/or dipole moments as the distributions broaden c
siderably. It is clear, however, that by smearing out t
statistical noise by using simple histograms one obtains s
lar distributions with well defined peaks and decays for
the thermodynamic states. This suggests a scaling beha
that will be described in Sec. IV.

C. Internal energy of chains and rings

We computed the internal energy per particle of cha
and rings as a function of their sizeec(N) ande r(N), respec-
1-4
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tively. For all the states considerede r(N) is lower than
ec(N) if N>4 and the differencee r(N)2ec(N) exhibits a
minimum forN'8 –10. In line with zero temperature resul
@24,25#, ec(N) ande r(N) are well approximated~except for
the smallest values ofN) by the functions

bec~N!

m* 2
52e0

c1
e1

c

N
, ~6!

and

be r~N!

m* 2
52e0

r 1
e1

r

N2
, ~7!

where the coefficientse0
c , e0

r , e1
c , and e1

r depend onm*
only andb[1/kBT. We obtained these coefficients by fittin
the simulation data to Eqs.~6! and ~7!. We found that for a
given simulation the values ofe0

c ande0
r differ by less than

1% and that their dependence on density is negligible. Th
at a given temperature, the system has a well defined b
energye0(m* )5e0

c(m* )5e0
r (m* ). In addition, we verified

that e1
c and e1

r depend on temperature only. The values
these parameters are collected in Table II. Note thate0 is
close to the nearest-neighbor dipolar approximation whilee1

c

FIG. 2. Average number of chains of sizeN obtained from simu-
lations at~a! r* 50.025,m* 52.5 ~system with 5776 particles! and
~b! r* 50.0375,m* 53.0. The bars represent histograms obtain

by simple averages in steps of sizeN̄c/2.

FIG. 3. Average number of rings of sizeN obtained from simu-
lations at~a! r* 50.025,m* 52.5 ~system with 5776 particles! and
~b! r* 50.0375,m* 53.0. The bars represent histograms obtain

by simple averages in steps of sizeN̄r /4.
06120
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differs by about 25%@14#. In Fig. 5, we plotec(N) and
e r(N) obtained from the simulations atr* 50.025,m* 52.5
(N55776) andr* 50.0375,m* 53, and the functions~6!
and ~7! calculated using the parameters of Table II. Simi
results are obtained for the other simulations and thus
conclude that the internal energy of chains and rings is w
approximated by the sum of a bond energy and a finite-s
correction.

Also shown in Fig. 5 is the reduced energy per particle
defect clusters. The function for the internal energy of def
clusters is not known. However, a comparison of their ene
with the energy of chains and rings reveals that the ene
per particle is the same for all clusters, in the limitN→`.
The internal energy of defect clusters is always larger th
that of rings and it appears to be larger than that of chains
smallN only. This behavior, however, is within the statistic
fluctuations of the energy and longer simulations are requ
to establish it.

D. Conformational properties of clusters

For large N, the radius of gyrationRg of the clusters
scales with the number of monomersN as

Rg~N!5bNn, ~8!

whereb is a characteristic length andn a universal exponen
that depends on the dimension of space and on the typ
interactions and lies between 1~rigid object! and 0.5~ran-
dom walk!. Clusters with the conformation of a self-avoidin
random walk~SARW! in 2D haven50.75 @26#. During the
simulation runs, we calculated̂Rg

2(N)&, the mean value of
the radius of gyration squared for chains, rings, and de

TABLE II. Parameters of the internal energy of rings and chai

m* e0 e1
c e1

r

2.5 2.05 2.56 1061
2.75 2.12 2.65 1161
3.0 2.17 2.66 1261

d

d

FIG. 4. Average number of defect clusters of sizeN obtained
from simulations at~a! r* 50.025, m* 52.5 ~system with 5776
particles! and ~b! r* 50.0375,m* 53.0. The bars represent histo

grams obtained by simple averages in steps of sizeN̄cd/4.
1-5
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clusters of lengthN. In Figs. 6, 7, and 8 we plot the resul
for simulations atr* 50.025,m* 52.5 andr* 50.0375,m*
53.0.

It is clear from Fig. 6 thatn50.75 for long chains (N
greater than'10) and thus dipolar chains have the confo
mation of a 2D SARW. Similar results were obtained for
the other simulations and we conclude that the exponen
universal, in the range of densities and dipole moments c
sidered in this work.

The radius of gyration of rings was calculated in a simi
fashion and the results are shown in Fig. 7. It is clear fr
the figure that the scaling regime of SARWs with return
the origin ~characterized by the same exponentn50.75) is
observed for large rings (N greater than'40). Smaller rings
scale withn close to 1, indicating that they behave as rig
objects. The crossover from the rigid to the fluctuati
~SARW! regime is broader at higher temperatures and lo
densities.

A measure of the different stiffnesses of dipolar cha
and rings is obtained through the persistence length of th
clusters, l c(N) and l r(N), respectively. The persistenc

FIG. 5. Energy per particle~divided bym* 2) of chains~circles!,
rings ~squares!, and defect clusters~triangles! of length N from
simulations at~a! r* 50.025,m* 52.5 ~system with 5776 particles!
and~b! r* 50.0375,m* 53. In the main figures lines are fits to th
simulation data obtained using Eqs.~6! and ~7! and the values of
Table II. The inset shows the tails in more detail: full line corr
sponds to chains, dashed line to rings, and dotted line to de
clusters.

FIG. 6. Square root of the mean squared radius of gyration
function of the number of monomers in chains: stars,N55776;
circles,N51600; the full line has slope 0.75 and the dashed l
slope 1. The radius of gyration is in units ofs. ~a! r* 50.025,
m* 52.5; ~b! r* 50.0375,m* 53.0.
06120
-
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r

r

s
se

length of chains may be calculated in a simulation run us
@1#

l c~N!

s
5

1

2s2 K (
i 52

N21

eW1•eW i1eWN21•eWN2 i L , ~9!

where^•••& is an average over chains of lengthN, eW i is the
vector between consecutive dipoles (eW i5rW i 112rW i) and 1,
and N label the ~free! chain ends. Clearly, Eq.~9! yields
l c(N)'N for rigid chains whilel c(N)!N for long flexible
chains.

A similar expression, measuring the deviation from t
rigid ring structure, may be used to calculate the persiste
length of rings. The positions of the dipoles in the ring a
labeled consecutively and the vectorseW i between consecutive
dipoles are defined as for chains but with periodic bound
conditions (eW i 1N5eW i). The ring persistence lengthl r(N) is
then obtained using

l r~N!

s
5

1

Ns2 K (
i 51

N

(
j 5 i 11

N211 i

eW i•A~a i j !eW j L , ~10!

whereA is the rotation matrix in 2D anda i j 52p( i 2 j )/N is
the angle betweeneW i and eW j in the ring configuration. For
rigid rings Eq.~10! yields l r(N)'N while for long flexible
rings l r(N)!N.

The persistence length of dipolar chains and rings is p
ted in Fig. 8. Histograms, with the step size indicated in
caption, are calculated to smear out the statistical noise
large N. The results indicate thatl c(N) is constant within
the statistical error whilel r(N) displays two regimes: it in-
creases linearly withN at smallN reaching a constant valu
at largeN. The crossover between the rigid and SARW r
gimes occurs at larger values ofN at lower temperatures
This clarifies the origin of the crossover for the radius
gyration of rings observed in Figs. 7~a! and 7~b!.

Finally, we calculated the radius of gyration of defe
clusters to check if they follow the conformational scaling
a RW (n50.5) as they are rather convoluted objects. T
results are plotted in Fig. 9. Care must be taken in analyz
these results since defect clusters have a variety of topolo

ct

a

e

FIG. 7. Square root of the mean squared radius of gyration
function of the number of monomers in rings: stars,N55776;
circles,N51600; the full line has slope 0.75 and the dashed l
slope 1.~a! r* 50.025,m* 52.5; ~b! r* 50.0375,m* 53.0.
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that were not distinguished in this calculation. In additio
their length distribution functions are broader than the dis
butions of chains and rings and thus larger statisical er
are to be expected. Nevertheless, the results of Fig. 9 s
no evidence of a RW regime. We conclude that, for the fin
systems studied in this work, defect clusters have the con
mational properties of a SARW.

IV. SCALING LAWS FOR THE LENGTH DISTRIBUTIONS
OF CHAINS AND RINGS: EQUILIBRIUM POLYMER

THEORY

A. General results

The results of the previous section show that the struc
of the dipolar fluid at low temperatures and densities may
described by equilibrium distributions of clusters of vario
types. Each type of cluster exhibits a well defined len
distribution although clusters break and recombine durin
simulation run. Their internal energy is consistent with
characteristic bond energy identical for all types of cluste
Finally, the total bond energy is very close to the total int
nal energy indicating that interactions between clusters
negligible.

FIG. 8. Persistence length of chains and rings as a functio
the number of monomers. Rings: open circles and bars~histogram!.
Chains: squares~histogram!. The step size of both histograms is 1
~a! r* 50.025,m* 52.5; ~b! r* 50.0375,m* 53.0.

FIG. 9. Square root of the mean squared radius of gyration
function of the number of monomers in defect clusters: starsN
55776; circles,N51600; the full line has slope 0.75 and th
dashed line slope 1.~a! r* 50.025, m* 52.5; ~b! r* 50.0375,
m* 53.0.
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These features suggest that the quasi-2D dipolar fluid m
be described as an ideal mixture of various types of clus
in chemical equilibrium@9#. The Helmholtz free energy den
sity F/A of this system is written as

bs2F/A5(
k

(
N5sk

`

rk* ~N!

3@ ln rk* ~N!212 ln q̃k~N!#, ~11!

where k labels the type of cluster~chains, rings, and the
several types of defect clusters!, sk is the minimal length of
clusters of typek, while q̃k(N) is the partition function~mul-
tiplied by s2/A) andrk* (N) the reduced density of cluster
of type k, with lengthN.

Minimization of the free energy with respect to the de
sitiesrk* (N) yields the set of equations

rk* ~N!5q̃k~N!exp~Nbm!, ~12!

wherem is the chemical potential of the system. The clus
densities satisfy the condition

r* 5(
k

(
sk

`

Nrk* ~N!, ~13!

and may be viewed as length distributions for the vario
types of clusters. These equations determine the struc
and thermodynamics of the system, given the cluster pa
tion functionsq̃k(N): at fixed temperature and density, Eq
~12! and ~13! define the distribution functionsrk* (N) and
thus the structure of the system; substitution of these dis
butions into Eq.~11! yields the equilibrium free energy as
function of r* andm* . The theory can be applied to dilut
dipolar fluids if the partition functions of dipolar chains
rings, and defect clusters are known.

The results for the conformational properties of dipo
chains and rings suggest that these aggregates behave
lute polymers. In addition, the existence of chemical equil
rium among clusters suggests an analogy with equilibri
polymers @20,21#. In recent MC simulations, a 3D~lattice
and off-lattice! model was proposed that, by constructio
allows the self-assembly of linear clusters~chains and rings!.
The cluster internal energy is proportional to the number
bonds and there is no attraction between clusters~nearest-
neighbor bonding interactions!. The model was specifically
built to study the equilibrium properties of polydisperse li
ear aggregates and very accurate results for their confor
tional properties, length distributions, etc., were obtained
was found that the conformational properties of these mo
equilbrium polymers are identical to those of monodispe
quenched polymers. Additionally, the length distributio
functions of the simulated equilibrium polymers scale as p
dicted theoretically@26# and the presence of rings does n
affect the distribution of chains.

In the following we analyze the 2D dipolar fluid by adop
ing the hypothesis that dipolar chains and rings behave
dilute equilibrium polymers. This will be tested by compa
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ing the theoretical and simulated results for the dipolar ch
and ring length distribution functions. Before we procee
we note an important difference between the dipolar fl
and the model equilibrium polymers described in the pre
ous paragraph. In the latter there are two bonding sites
monomer and thus the internal energy of the clusters is
ways proportional to the number of bonds. By contra
cross-linked dipolar chains and rings have internal ener
that differ from those of chains and rings and thus we c
them defect clusters.

B. Length distributions of dipolar chains

For nearest-neighbor bonding interactions the chain
ergy is independent of the chain conformation and thus
partition function of an isolated, long,N-monomer chain is
approximated by the product of two terms:~i! the number of
conformations of a SARW withN steps, in the limitN→`
@26# and ~ii ! the Boltzmann factor of the energyEc(N)
@20,21#,

Zc~N!5AcN
g21exp@2bEc~N!#. ~14!

g is a universal exponent that depends on the dimensio
space and on the type of interactions andAc is a nonuniver-
sal constant. Assuming that the partition function of a dipo
chain with N-monomers of diameters, in areaA, is sepa-
rable and that the reduced energy per monomer is given
Eq. ~6!, we obtain

Zc
dip5

A

s2
AcN

g21exp~Ne0m* 22e1
cm* 2!. ~15!

Substituting this result into Eq.~12! we find for the reduced
density of noninteracting,N-dipolar chains,

rc* ~N!5AcN
g21exp~2e1

cm* 22m̃N!, ~16!

wherem̃52bm2e0m* 2 is the shifted chemical potential.
Comparison of the chain densities obtained from

simulations with those calculated using Eq.~16! requires an
approximation for the~shifted! chemical potentialm̃. This is
achieved by approximating the chain density~16! by a con-
tinuous function, namely, a non-normalized gamma distri
tion. The first moment of this distribution yields,

N̄c[

(
N52

`

Nrc* ~N!

(
N52

`

rc* ~N!

'

E
0

`

Nrc* ~N!dN

E
0

`

rc* ~N!dN

5
g

m̃
, ~17!

i.e., m̃ is inversely proportional to the mean chain lengthN̄c .
The decay of the chain length distribution~see Fig. 2! is

dominated by the exponential term, which depends onN

through the scaled variableN/N̄c . This scaling form was
used to plot the chain length distributions obtained from
different simulations. The results are shown in Fig. 10 wh
the theoretical prediction ln@rc* (N)/rc* (N̄c)#'g2gN/N̄c with
06120
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g51.33 @26# is also shown. The results suggest that scal
applies to systems atm* 52.5. For systems atm* 52.75,
scaling obtains at small values ofN/N̄c only, owing to the
large statistical errors which increase with increasingN̄c and
the decreasing fraction of monomers in chains. It is also c
from Fig. 10 that the scaling form does not apply to sh
chains (N,N̄c). This is as expected since both Eq.~15! for
the partition function and Eq.~6! for the chain internal en-
ergy are valid for largeN only.

In Fig. 11 we plot the scaling form in a slightly differen
fashion that includes the logarithmic corrections arising fro
the power law in Eq.~16!. We consider the normalized dis

FIG. 10. Scaling form for the length distribution of dipola
chains and dipolar rings. Symbols are simulation results. Circ
r* 50.025. Squares:r* 50.031 25. Diamonds:r* 50.0375. Full
symbols:m* 52.5. Open symbols:m* 52.75. The results for chains
straddle the straight line. The results for rings follow the curve a
are obtained using Eq.~22!. Full lines are the theoretical predic
tions: the straight line is the result for chains obtained from E
~16! and ~17! with g51.33 and the curve the result for rings ob
tained from the right-hand side of Eq.~23! with g51.33 anda
50.5.

FIG. 11. Scaling form for the length distribution of chains usi
histograms and including logarithmic corrections@Eq. ~18!#. Sym-
bols are as in Fig. 10 and the full line is the theoretical predict
with g51.33.
1-8
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tribution of chainsFc(N) corresponding to Eq.~16!, and
find,

ln@NFc~N!#5K~g!1gS ln
N

N̄c

2
N

N̄c
D , ~18!

whereK(g)5g ln g2ln G(g). The left-hand side is obtaine
from the average fraction of chains with length in a giv
interval centered atN in the simulation run while the right
hand side is calculated using the theoretical value og
51.33. The normalized distribution function is obtain
from a histogram with step sizeN̄c/2 ~see Fig. 2!, i.e.,Fc(x)
at x5(2k11)N̄c/4, with integerk, is the average fraction o
chains with length in the interval@x2N̄c/4;x1N̄c/4#. Figure
11 shows that the scaling form applies to intermediate va
of N/N̄c . The scaling region is wider at low dipole momen
and densities, in line with the fact that deviations from sc
ing for largeN are due to statistical noise. As mentioned
the previous section, the number of chains in the simulati
at m* 53 is rather small, rendering the present analy
meaningless for that thermodynamic state.

We note that, in addition to smearing out statistical erro
histograms have the advantage over the bare distribution
being unaffected by changes in the cutoff distancer c . We
have repeated the histogram analysis for a system atr*
50.025,m* 52.5, and two different cutoff distancesr c , 1.1s
and 1.2s. As expected, the scaled distributions are not
fected by the choice of cutoff.

C. Length distributions of dipolar rings

As for chains the partition function of isolated, lon
N-monomer rings may be approximated by the product of~i!
the number of conformations of a SARW ofN steps with
return to the origin, in the limitN→` @26# and~ii ! the Bolt-
zmann factor of the energyEr(N) @20#. In addition, as re-
marked in@20#, equilibrium between chains and rings has
be taken into account by including the possibility th
N-rings may break inN different places, yielding anN-chain.
The partition function of anN-ring is then

Zr~N!5ArN
a23exp@2bEr~N!#. ~19!

a is a universal exponent that depends on the dimensio
space and on the type of interactions andAr is a nonuniversal
constant.a obeys the hyperscaling relationa522nD, and
thusa50.5 for a SARW inD52. In analogy with the treat-
ment of dipolar chains we assume that the partition funct
of dipolar rings is separable and use Eq.~19! to approximate
the partition function of anN-dipolar ring, with internal en-
ergy given by Eq.~7!, by

Zr
dip~N!5

A

s2
ArN

a23expS Ne0m* 22
e1

r

N
m* 2D . ~20!

Substitution of this equation into Eq.~12! yields for the den-
sities of noninteractingN-dipolar rings
06120
s

l-

s
s

,
of

-

t

of

n

r r* ~N!5ArN
a23expS 2

e1
r m* 2

N
2m̃ND . ~21!

Comparison of the simulation and theoretical results
carried out using the~auxiliary! distributionF r(N),

F r~N!5
r r* ~N!

r r* ~N̄c!
expF e1

r m* 2S 1

N
2

1

N̄c
D G . ~22!

By combining this equation with Eqs.~21! and~17! one finds
that F r(N) is a universal function ofN/N̄c , namely,

ln F r~N!5g1~a23!ln
N

N̄c

2g
N

N̄c

. ~23!

We have calculatedF r(N) using the average number o
rings of a given length and the average number of rings w
N5N̄c obtained in a simulation run as well as the value ofe1

r

~see Table II!. In Fig. 10 we plotF r(N) from six different
simulations@Eq. ~22!# and the right hand side of Eq.~23!
calculated witha50.5 andg51.33. The data collapse i
remarkable. We may use the equilibrium chain length dis
bution to eliminate the exponential dependence of the r
distribution function, obtaining a slowly varying scalin
function,

lnS F r~N!rc* ~N̄c!

rc* ~N!
D 5~a2g22!ln

N

N̄c

, ~24!

which is plotted in Fig. 12. The points in this figure a
obtained by dividing the results corresponding to rings
those corresponding to chains in Fig. 10. The data colla
for the six simulation runs is again remarkable.

Figures 10 and 12 show that the simulation results sc
according to the theoretical prediction, especially for int
mediate values ofN. In line with the results for the confor
mational properties scaling is not observed at smallN. Sta-
tistical errors inherent in the simulations of the large

FIG. 12. Scaling form for the length distribution of dipolar ring
using Eq.~24!. Symbols are as in Fig. 10 and the full line is th
theoretical prediction withg51.33 anda50.5.
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clusters prevent scaling in the largeN limit. Indeed, Fig. 10
and Fig. 12 show that the simulation results collapse on
theoretical curves for values ofN between'N̄c and'3N̄c .
The slope of the straight line in Fig. 12 is consistent w
a50.5, thus confirming the analogy between dipolar rin
and equilibrium ring polymers. Again, departures from t
straight line at smallN can be traced to the crossover fro
rigid to flexible rings that occurs at relatively large values
N.

The generalization of this analysis to defect clusters
difficult for several reasons. The first concerns a limitation
the simulations: it is not feasible to obtain good statistics
all types of defect cluster~recall that the distributions of Fig
4 lump together all types of defect cluster!. Other difficulties
arise in the calculation of the partition function of defe
clusters, since the forms of both the internal energy and
configurational partition function are not well known.

V. CONCLUSIONS AND DISCUSSION

Monte Carlo simulations of the quasi-2D dipolar fluid
low densities and temperatures reveal that the structure
be described in terms of equilibrium chains, rings, and de
clusters of more complex topology. The dipolar defect cl
ters have been characterized in detail.

The quantitative analysis of these structures shows
they exhibit length distribution functions that depend on
type of cluster and that vary with density and temperatu
The calculation of the dipolar cluster internal energy reve
the existence of a bond energy that depends on temper
only. The analysis of the cluster conformational propert
suggests that dipolar cluster conform as 2D standard p
mers.

A detailed comparison of the length distributions of t
simulated dipolar chains and rings with those predicted
equilibrium polymer theory shows that the structure of t
quasi-2D dipolar fluid is the same as that of 2D equilibriu
polymers.

As mentioned in the Introduction, the major question co
cerning dilute strongly dipolar fluids is the existence~and
nature! of a fluid-fluid phase transition in this regime. Th
type of analysis developed in this paper, if extended to sim
lations at higher densities, may shed light on these questi
In fact, the mean chain length is a monotonically increas
function of the chemical potential@see Eq.~17! and the defi-
nition of m̃# and depends on the total densityr throughm
only. Likewise, the mean ring length@see Eq.~21!# is a
v.
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monotonic function ofm. Thus, at fixed temperature, an in

stability signaled by (]m/]r)T,0 may occur ifN̄c and N̄r

decrease in the same range of increasing densities. In o
words, within simulation results as reported in this paper,
~mean field! loops that signal first-order phase transitio
correspond to loops in the mean chain and ring lengths. T
type of analysis has an advantage over the direct calcula
of the free energy by making a connection between the st
ture and the thermodynamics of the system, thus revea
the mechanism that drives the phase transition. In fac
necessary condition for the decrease ofN̄c and N̄r with in-
creasing density is the self-assembly of defect clusters. T
conclusion is supported by the results of@20# for linear equi-
librium polymers~chains and rings! where both these quan
tities are shown to increase with density at all simulated te
peratures. Thus, the appearance of such loops indicate
existence of a topological phase transition@14# resulting
from the competition between structures with high ene
and high entropy~chains! and structures with low energy an
low entropy ~defect clusters!. This method of determining
the existence and nature of the phase transition has, how
severe limitations already evident in the results of Table I.
order to obtain reliable results forN̄c andN̄r very long simu-
lations are required. The number of chains, however,
creases rapidly with increasing density, and thus statist
errors may become unacceptable too soon. The mean
length is less affected by statistical errors since the decre
in the number of rings with increasing density is rather slo
N̄r , however, varies more slowly with density, rendering t
detection of nonmonotonic behavior more difficult. Desp
these limitations we are currently simulating higher densit
at reduced dipole momentm* 52.75 and will analyze the
results along these lines.

In closing, we note that the topological phase transition
only one of the phase transitions that has been predicte
occur in dipolar fluids at low densities. According to rece
theoretical proposals, these systems may also exhibit a
colation transition with increasing density@27#. The method
developed in this paper could also be used to test this
pothesis. It is straightforward to establish the scaling form
the largest dipolar cluster and to compare it with the form
critical percolating clusters@28#.

Other phase diagrams that include nematic-isotropic@29#
or nematic-nematic@30# transitions have been proposed f
models of semiflexible equilibrium polymers. It is, howeve
unlikely that ordered phases occur in dilute dipolar fluids
ys.
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